Search results
Results From The WOW.Com Content Network
Orthogonal matrices are important for a number of reasons, both theoretical and practical. The n × n orthogonal matrices form a group under matrix multiplication, the orthogonal group denoted by O(n), which—with its subgroups—is widely used in mathematics and the physical sciences. For example, the point group of a
Matrices are subject to standard operations such as addition and multiplication. [2] Most commonly, a matrix over a field F is a rectangular array of elements of F. [3] [4] A real matrix and a complex matrix are matrices whose entries are respectively real numbers or complex numbers. More general types of entries are discussed below. For ...
A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to diverse ways of classifying matrices. A first group is matrices satisfying concrete conditions of the entries, including constant matrices.
Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra.
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of ...
In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .
The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.
The scalar matrices are the center of the algebra of matrices: that is, they are precisely the matrices that commute with all other square matrices of the same size. [ a ] By contrast, over a field (like the real numbers), a diagonal matrix with all diagonal elements distinct only commutes with diagonal matrices (its centralizer is the set of ...