When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique ...

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.

  4. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞". This is often written symbolically as f ( n ) ~ n 2 , which is read as " f ( n ) is asymptotic to n 2 ". An example of an important asymptotic result is the prime number theorem .

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  6. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.

  7. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    The field of asymptotics is normally first encountered in school geometry with the introduction of the asymptote, a line to which a curve tends at infinity.The word Ασύμπτωτος (asymptotos) in Greek means non-coincident and puts strong emphasis on the point that approximation does not turn into coincidence.

  8. Generalised logistic function - Wikipedia

    en.wikipedia.org/wiki/Generalised_logistic_function

    The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.

  9. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...