When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, since a cube has 12 edges and 6 faces, the formula implies that it has eight vertices.

  3. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    For example, with this meaning, the faces of a cube comprise the cube itself (3-face), its (square) facets (2-faces), its (line segment) edges (1-faces), its (point) vertices (0-faces), and the empty set. In some areas of mathematics, such as polyhedral combinatorics, a polytope is by definition convex.

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    A polyhedron is a solid whose boundary is covered by flat polygonals known as the faces, sharp corners known as the vertices, and line segments known as the edges. Polyhedra in some cases can be classified, judging from the shape of their faces. For example, when polyhedra have all equilateral triangles as their faces, they are known as ...

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  6. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...

  7. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    The dimension of a face is the dimension of this hull. The 0-dimensional faces are the vertices themselves, and the 1-dimensional faces (called edges) are line segments connecting pairs of vertices. Note that this definition also includes as faces the empty set and the whole polytope P. If P itself has dimension d, the faces of P with dimension ...

  8. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron . Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces.

  9. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.