When.com Web Search

  1. Ads

    related to: vectors and notation grade 3

Search results

  1. Results From The WOW.Com Content Network
  2. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .

  3. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    The fundamental difference is that GA provides a new product of vectors called the "geometric product". Elements of GA are graded multivectors: scalars are grade 0, usual vectors are grade 1, bivectors are grade 2 and the highest grade (3 in the 3D case) is traditionally called the pseudoscalar and designated .

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Vector notation, common notation used when working with vectors Vector operator , a type of differential operator used in vector calculus Vector product , or cross product, an operation on two vectors in a three-dimensional Euclidean space, producing a third three-dimensional Euclidean vector perpendicular to the original two

  5. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    [3] The scalars and vectors have their usual interpretation and make up distinct subspaces of a geometric algebra. Bivectors provide a more natural representation of the pseudovector quantities of 3D vector calculus that are derived as a cross product, such as oriented area, oriented angle of rotation, torque, angular momentum and the magnetic ...

  6. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of vectors is linearly independent if the only way to express the zero vector as a linear combination of elements of S is to take zero for every coefficient a i. A set of vectors that spans a vector space is called a spanning set or generating set.

  7. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    A standard basis consists of the vectors e i which contain a 1 in the i-th slot and zeros elsewhere. This vector space is the coproduct (or direct sum) of countably many copies of the vector space F. Note the role of the finiteness condition here.