Search results
Results From The WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The drag coefficient of a sphere drops at high Reynolds number (number 5 on the graph). The effect occurs at lower Reynolds numbers when the ball is rough (such as a golf ball with dimples) than when it is smooth (such as a table tennis ball). In fluid dynamics, the drag crisis (also known as the Eiffel paradox [1]) is a phenomenon in which ...
The notion of boundary layers—introduced by Prandtl in 1904, founded on both theory and experiments—explained the causes of drag at high Reynolds numbers. The boundary layer is the thin layer of fluid close to the object's boundary, where viscous effects remain important even when the viscosity is very small (or equivalently the Reynolds ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
English: Drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter-colored line is for the case of a rough surface. The numbers along the line indicate several flow regimes and associated changes in the drag coefficient:
The power number N p (also known as Newton number) is a commonly used dimensionless number relating the resistance force to the inertia force. The power-number has different specifications according to the field of application. E.g., for stirrers the power number is defined as: [1] = with
The Strouhal number and Reynolds number must be considered when addressing the ideal method to develop a body made to move through a fluid. Furthermore, the relationship for these values is expressed through Lighthill's elongated-body theory, which relates the reactive forces experienced by a body moving through a fluid with its inertial forces ...