Search results
Results From The WOW.Com Content Network
m 3: US spelling: cubic meter one kilolitre 1.0 m 3 (35 cu ft) cubic centimetre: cm3 cm 3: US spelling: cubic centimeter one millilitre 1.0 cm 3 (0.061 cu in) cc cc cubic millimetre: mm3 mm 3: US spelling: cubic millimeter: 1.0 mm 3 (6.1 × 10 −5 cu in) non-SI metric: kilolitre: kl kl US spelling: kiloliter one cubic metre 1.0 kl (35 cu ft ...
The official SI symbols are g/cm 3, g·cm −3, or g cm −3. It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L). The density of water is about 1 g/cm 3, since the gram was originally defined as the mass of one cubic centimetre of water at its maximum density at 4 °C (39 °F). [1]
17.5 M pure (glacial) acetic acid (1.05 g/cm 3) [22] 40 M: pure solid hydrogen (86 g/L) [23] 55.5 M: pure water at 3.984 °C, temperature of its maximum density (1.0000 g/cm 3) [24] 10 2: hM 118.8 M: pure osmium at 20 °C (22.587 g/cm 3) [25] 140.5 M: pure copper at 25 °C (8.93 g/cm 3) 10 3: kM: 10 4: 24 kM: helium in the solar core (150 g/cm ...
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
dam 3: US spelling: cubic dekameter: 1.0 dam 3 (35,000 cu ft) cubic metre: m3 m 3: US spelling: cubic meter one kilolitre 1.0 m 3 (35 cu ft) cubic decimetre: dm3 dm 3: US spelling: cubic decimeter one litre 1.0 dm 3 (61 cu in) cubic centimetre: cm3 cm 3: US spelling: cubic centimeter one millilitre 1.0 cm 3 (0.061 cu in) cc cc cubic millimetre ...
An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth.The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2]
A newton is equal to 1 kg⋅m/s 2, and a kilogram-force is 9.80665 N, [3] meaning that 1 kgf/cm 2 equals 98.0665 kilopascals (kPa). In some older publications, kilogram-force per square centimetre is abbreviated ksc instead of kg/cm 2.
The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. [93] The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11.2 km/s (25,100 mph).