Search results
Results From The WOW.Com Content Network
The degree of dependence between variables X and Y does not depend on the scale on which the variables are expressed. That is, if we are analyzing the relationship between X and Y, most correlation measures are unaffected by transforming X to a + bX and Y to c + dY, where a, b, c, and d are constants (b and d being positive).
The distinction between known variables and unknown variables is generally made in the statement of the problem, by phrases such as "an equation in x and y", or "solve for x and y", which indicate the unknowns, here x and y. However, it is common to reserve x, y, z, ... to denote the unknowns, and to use a, b, c, ... to denote the known ...
The origin is often labeled O, and the two coordinates are often denoted by the letters X and Y, or x and y. The axes may then be referred to as the X-axis and Y-axis. The choices of letters come from the original convention, which is to use the latter part of the alphabet to indicate unknown values.
Other species (including most Drosophila species) use the presence of two X chromosomes to determine femaleness: one X chromosome gives putative maleness, but the presence of Y chromosome genes is required for normal male development. In the fruit fly individuals with XY are male and individuals with XX are female; however, individuals with XXY ...
Given a set X, a relation R over X is a set of ordered pairs of elements from X, formally: R ⊆ { (x,y) | x, y ∈ X}. [2] [10] The statement (x,y) ∈ R reads "x is R-related to y" and is written in infix notation as xRy. [7] [8] The order of the elements is important; if x ≠ y then yRx can be true or false independently of xRy.
The sign of the covariance of two random variables X and Y. In probability theory and statistics, covariance is a measure of the joint variability of two random variables. [1] The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables.
In a 2-dimensional Cartesian coordinate system, with x representing the abscissa and y the ordinate, the identity line [1] [2] or line of equality [3] is the y = x line. The line, sometimes called the 1:1 line, has a slope of 1. [4]
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .