Search results
Results From The WOW.Com Content Network
The enthalpy of fusion is the amount of energy required to convert one mole of solid into liquid. For example, when melting 1 kg of ice (at 0 °C under a wide range of pressures), 333.55 kJ of energy is absorbed with no temperature change. The heat of solidification (when a substance changes from liquid to solid) is equal and opposite.
By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV) [11] [12] 4.1×10 −21 J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV) [13]
The increase in the internal energy can be viewed as the energy required to overcome the intermolecular interactions in the liquid (or solid, in the case of sublimation). Hence helium has a particularly low enthalpy of vaporization, 0.0845 kJ/mol, as the van der Waals forces between helium atoms are particularly weak.
The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes. For example, a gigagram ( Gg ) or 10 9 g is 10 3 tonnes, commonly called a kilotonne .
Here, Einstein used V to represent the speed of light in vacuum and L to represent the energy lost by a body in the form of radiation. [5] Consequently, the equation E = mc 2 was not originally written as a formula but as a sentence in German saying that "if a body gives off the energy L in the form of radiation, its mass diminishes by L ...
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
The refractive index of liquid water (1.333 at 20 °C (68 °F)) is much higher than that of air (1.0), similar to those of alkanes and ethanol, but lower than those of glycerol (1.473), benzene (1.501), carbon disulfide (1.627), and common types of glass (1.4 to 1.6). The refraction index of ice (1.31) is lower than that of liquid water.
The very ambiguous terms "percent solution" and "percentage solutions" with no other qualifiers, continue to occasionally be encountered. This common usage of % to mean m/v in biology is because of many biological solutions being dilute and water-based, an aqueous solution. Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 ...