Ads
related to: zener diode how it works
Search results
Results From The WOW.Com Content Network
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
The Zener effect is primarily exhibited by reverse-biased diodes and bipolar transistor base-emitter junctions that breakdown below about 7 volts. The breakdown is due to internal field emission, since the junctions are thin, and the electric field is high. Zener-type breakdown is shot noise.
In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not ...
Avalanche diodes (commonly encountered as high voltage Zener diodes) are constructed to break down at a uniform voltage and to avoid current crowding during breakdown. These diodes can indefinitely sustain a moderate level of current during breakdown. The voltage at which the breakdown occurs is called the breakdown voltage.
Zener diodes have a low breakdown voltage. A standard value for breakdown voltage is for instance 5.6 V. This means that the voltage at the cathode cannot be more than about 5.6 V higher than the voltage at the anode (though there is a slight rise with current), because the diode breaks down, and therefore conducts, if the voltage gets any ...
When you buy a bottle of vitamins from a nutrition store, you’ll probably notice a best-by date on the bottom of the jar. But that inscribed number isn’t a hard-and-fast rule—there is some ...
Zener was known both for his dislike of experimental work and for preferring to work on practical problems within the arena of applied physics. Although he had a reputation of being very successful in these endeavors, he apparently considered himself as being less qualified to work on purely theoretical physics problems.