Search results
Results From The WOW.Com Content Network
Transcriptional repressor CTCF also known as 11-zinc finger protein or CCCTC-binding factor is a transcription factor that in humans is encoded by the CTCF gene. [ 5 ] [ 6 ] CTCF is involved in many cellular processes, including transcriptional regulation , insulator activity, V(D)J recombination [ 7 ] and regulation of chromatin architecture.
CTCF molecules can form homodimers on DNA, which can be co-bound by cohesin; this chromatin loop structure helps constrain the ability of enhancers within the loop to target genes outside the loop. Loops with CTCF and cohesin at the start and end of the loop that restrict enhancer-gene targeting are "insulated neighborhoods."
Two of these cell cycle regulation genes that are known to interact with CTCF are hTERT and C-MYC. In these cases, a loss of function mutation to the CTCF insulator gene changes the expression patterns and may affect the interplay between cell growth, differentiation and apoptosis and lead to tumourigenesis or other problems. [2]
CTCF forms methylation-sensitive insulators that regulate X-chromosome inactivation. Transcriptional repressor CTCFL (this protein) is a paralog of CTCF and appears to be expressed primarily in the cytoplasm of spermatocytes, unlike CTCF which is expressed primarily in the nucleus of somatic cells. CTCF and CTCFL are normally expressed in a ...
Topologically associating domains within chromosome territories, their borders and interactions. A topologically associating domain (TAD) is a self-interacting genomic region, meaning that DNA sequences within a TAD physically interact with each other more frequently than with sequences outside the TAD. [1]
Upon activation of Ipaf-1 by the intracellular bacterium S. typhimurium or other stress signals, Ipaf-1 recruits a CARD-containing adapter termed ASC and caspase-1 in unknown stoichiometry via CARD-CARD association. This complex in turn leads to autoproteolytic activation of caspase-1 and subsequent IL-1β and IL-18 maturation. [citation needed]
Californians who received their debit cards can call 800-240-0223 to activate them. Ahumada, who lives in the San Gabriel Valley, said Tuesday he was able to call the updated line and get his card ...
Thus, the loop can become smaller or larger. The loop extrusion process stops when cohesin encounters the architectural chromatin protein CTCF. The CTCF site needs to be in a proper orientation to stop cohesin. [31] [32] [33] Accumulation at promoters: Two hypotheses were proposed to explain accumulation of cohesin at the gene promoters: [34] [35]