When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga 's systematic work on their properties.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    This equation is called the canonical form of a hyperbola, because any hyperbola, regardless of its orientation relative to the Cartesian axes and regardless of the location of its center, can be transformed to this form by a change of variables, giving a hyperbola that is congruent to the original (see below).

  4. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    (The parabolas are orthogonal for an analogous reason to confocal ellipses and hyperbolas: parabolas have a reflective property.) Analogous to confocal ellipses and hyperbolas, the plane can be covered by an orthogonal net of parabolas, which can be used for a parabolic coordinate system.

  5. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  6. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of the hyperbola are the foci of the ellipse and its foci are the ...

  7. Kiepert conics - Wikipedia

    en.wikipedia.org/wiki/Kiepert_conics

    It has been proved that the Kiepert hyperbola is the hyperbola passing through the vertices, the centroid and the orthocenter of the reference triangle and the Kiepert parabola is the parabola inscribed in the reference triangle having the Euler line as directrix and the triangle center X 110 as focus. [1]

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    Then for the ellipse case of AC > (B/2) 2, the ellipse is real if the sign of K equals the sign of (A + C) (that is, the sign of each of A and C), imaginary if they have opposite signs, and a degenerate point ellipse if K = 0. In the hyperbola case of AC < (B/2) 2, the hyperbola is degenerate if and only if K = 0.

  9. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other." [5] Only one of the conjugate diameters of a hyperbola cuts the curve.