Search results
Results From The WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem , it is a very good approximation to the prime-counting function , which is defined as the number of prime numbers ...
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
The main idea is to express an integral involving an integer parameter (e.g. power) of a function, represented by I n, in terms of an integral that involves a lower value of the parameter (lower power) of that function, for example I n-1 or I n-2. This makes the reduction formula a type of recurrence relation. In other words, the reduction ...
The areas of these bars are added together, and this approximates the integral, in effect by summing areas of the form f(x)dx where f(x) is the height of a rectangle and dx is its width. For the Lebesgue integral, the range is partitioned into intervals, and so the region under the graph is partitioned into horizontal "slabs" (which may not be ...
Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.