Search results
Results From The WOW.Com Content Network
Abramowitz, Milton; Stegun, Irene A., eds. (1972). "Chapter 3". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
This means that the upper and lower sums of the function f are evaluated on a partition a = x 0 ≤ x 1 ≤ . . . ≤ x n = b whose values x i are increasing. Geometrically, this signifies that integration takes place "left to right", evaluating f within intervals [ x i , x i +1 ] where an interval with a higher index lies to the right of one ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.