When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for ...

  4. Lovász conjecture - Wikipedia

    en.wikipedia.org/wiki/Lovász_conjecture

    In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says: Every finite connected vertex-transitive graph contains a Hamiltonian path. Originally László Lovász stated the problem in the opposite way, but this version became

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms of the number of edges between parts. [3]: GT11, GT12, GT13, GT14, GT15, GT16, ND14 Grundy number of a directed graph. [3]: GT56 Hamiltonian completion [3]: GT34 Hamiltonian path problem ...

  6. Knight's tour - Wikipedia

    en.wikipedia.org/wiki/Knight's_tour

    Knight's graph showing all possible paths for a knight's tour on a standard 8 × 8 chessboard. The numbers on each node indicate the number of possible moves that can be made from that position. The knight's tour problem is an instance of the more general Hamiltonian path problem in graph theory.

  7. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    The NP-hardness of the unweighted longest path problem can be shown using a reduction from the Hamiltonian path problem: a graph G has a Hamiltonian path if and only if its longest path has length n − 1, where n is the number of vertices in G.

  8. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    The Hamiltonian paths are in one-to-one correspondence with the minimal feedback arc sets of the tournament. [5] Rédei's theorem is the special case for complete graphs of the Gallai–Hasse–Roy–Vitaver theorem, relating the lengths of paths in orientations of graphs to the chromatic number of these graphs. [6]

  9. Category:Computational problems in graph theory - Wikipedia

    en.wikipedia.org/wiki/Category:Computational...

    Pages in category "Computational problems in graph theory" The following 75 pages are in this category, out of 75 total. ... Hamiltonian path; Hamiltonian cycle ...