When.com Web Search

  1. Ad

    related to: hamiltonian circuit in graph theory explained in detail

Search results

  1. Results From The WOW.Com Content Network
  2. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  3. Hamiltonian path problem - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path_problem

    The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.

  4. Ore's theorem - Wikipedia

    en.wikipedia.org/wiki/Ore's_theorem

    Ore's theorem is a generalization of Dirac's theorem that, when each vertex has degree at least n/2, the graph is Hamiltonian. For, if a graph meets Dirac's condition, then clearly each pair of vertices has degrees adding to at least n. In turn Ore's theorem is generalized by the Bondy–Chvátal theorem.

  5. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Graph coloring [2] [3]: GT4 Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    An equivalent formulation in terms of graph theory is: Given a complete weighted graph (where the vertices would represent the cities, the edges would represent the roads, and the weights would be the cost or distance of that road), find a Hamiltonian cycle with the least weight.

  7. Fleischner's theorem - Wikipedia

    en.wikipedia.org/wiki/Fleischner's_theorem

    A 2-vertex-connected graph, its square, and a Hamiltonian cycle in the square. In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian.

  8. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    Barnette's conjecture is an unsolved problem in graph theory, a branch of mathematics, concerning Hamiltonian cycles in graphs. It is named after David W. Barnette , a professor emeritus at the University of California, Davis ; it states that every bipartite polyhedral graph with three edges per vertex has a Hamiltonian cycle.

  9. Pósa's theorem - Wikipedia

    en.wikipedia.org/wiki/Pósa's_theorem

    Pósa's theorem, in graph theory, is a sufficient condition for the existence of a Hamiltonian cycle based on the degrees of the vertices in an undirected graph. It implies two other degree-based sufficient conditions, Dirac's theorem on Hamiltonian cycles and Ore's theorem. Unlike those conditions, it can be applied to graphs with a small ...