When.com Web Search

  1. Ad

    related to: another way to say uncertainty in chemistry problems pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  3. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  4. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Quantify the uncertainty in each input (e.g. ranges, probability distributions). Note that this can be difficult and many methods exist to elicit uncertainty distributions from subjective data. [14] Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model).

  5. Imprecise probability - Wikipedia

    en.wikipedia.org/wiki/Imprecise_probability

    Uncertainty is traditionally modelled by a probability distribution, as developed by Kolmogorov, [1] Laplace, de Finetti, [2] Ramsey, Cox, Lindley, and many others.However, this has not been unanimously accepted by scientists, statisticians, and probabilists: it has been argued that some modification or broadening of probability theory is required, because one may not always be able to provide ...

  6. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Another way of saying this is that the derived quantity g is more sensitive to, e.g., the measured quantity T than to L or θ. Substituting the example's numerical values, the results are indicated in Table 1, and agree reasonably well with those found using Eq(4).

  7. Objective-collapse theory - Wikipedia

    en.wikipedia.org/wiki/Objective-collapse_theory

    This is often presented as an unavoidable consequence of Heisenberg's uncertainty principle: the collapse in position causes a larger uncertainty in momentum. This explanation is wrong; in collapse theories the collapse in position also determines a localization in momentum, driving the wave function to an almost minimum uncertainty state both ...

  8. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Zero-point energy is fundamentally related to the Heisenberg uncertainty principle. [91] Roughly speaking, the uncertainty principle states that complementary variables (such as a particle's position and momentum, or a field's value and derivative at a point in space) cannot simultaneously be specified precisely by any given quantum state. In ...

  9. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...