When.com Web Search

  1. Ads

    related to: apex geometry sem 2 answers sheet algebra 3

Search results

  1. Results From The WOW.Com Content Network
  2. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1. The solid angle of a cone with its apex at the apex of the solid angle, and with apex angle 2 θ, is the area of a spherical cap on a unit sphere

  3. Apex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Apex_(geometry)

    The term apex may used in different contexts: In an isosceles triangle, the apex is the vertex where the two sides of equal length meet, opposite the unequal third side. [1] Here the point A is the apex. In a pyramid or cone, the apex is the vertex at the "top" (opposite the base). In a pyramid, the vertex is the point that is part of all the ...

  4. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the base and extended base of the altitude.

  5. List of algebraic geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_algebraic_geometry...

    Algebraic variety. Hypersurface; Quadric (algebraic geometry) Dimension of an algebraic variety; Hilbert's Nullstellensatz; Complete variety; Elimination theory

  6. Category:Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Algebraic_geometry

    Algebraic geometry is the place where the algebra involved in solving systems of simultaneous multivariable polynomial equations meets the geometry of curves, surfaces, and higher dimensional algebraic varieties.

  7. Real algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Real_algebraic_geometry

    Real algebra is the part of algebra which is relevant to real algebraic (and semialgebraic) geometry. It is mostly concerned with the study of ordered fields and ordered rings (in particular real closed fields ) and their applications to the study of positive polynomials and sums-of-squares of polynomials .