When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The algebraic multiplicity μ A (λ i) of the eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest integer k such that (λ − λ i) k divides evenly that polynomial. [9] [25] [26] Suppose a matrix A has dimension n and d ≤ n distinct eigenvalues.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    hide. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called ...

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    The multiplicity of 0 as an eigenvalue is the nullity of P, while the multiplicity of 1 is the rank of P. Another example is a matrix A that satisfies A 2 = α 2 I for some scalar α . The eigenvalues must be ± α .

  5. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The diagonal entries of the normal form are the eigenvalues (of the operator), and the number of times each eigenvalue occurs is called the algebraic multiplicity of the eigenvalue. [3] [4] [5] If the operator is originally given by a square matrix M, then its Jordan normal form is also called the Jordan normal form of M. Any square matrix has ...

  6. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  7. Spectrum of a matrix - Wikipedia

    en.wikipedia.org/wiki/Spectrum_of_a_matrix

    In mathematics, the spectrum of a matrix is the set of its eigenvalues. [1][2][3] More generally, if is a linear operator on any finite-dimensional vector space, its spectrum is the set of scalars such that is not invertible. The determinant of the matrix equals the product of its eigenvalues. Similarly, the trace of the matrix equals the sum ...

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1][2] It states that [3] where the λi are the eigenvalues of A, and the matrices.

  9. Defective matrix - Wikipedia

    en.wikipedia.org/wiki/Defective_matrix

    If the algebraic multiplicity of exceeds its geometric multiplicity (that is, the number of linearly independent eigenvectors associated with ), then is said to be a defective eigenvalue. [1] However, every eigenvalue with algebraic multiplicity m {\displaystyle m} always has m {\displaystyle m} linearly independent generalized eigenvectors.