Search results
Results From The WOW.Com Content Network
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.
Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.
Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.
Here’s an example using the $100,000 loan with a factor rate of 1.5 and a two-year (730 days) repayment period: Step 1: 1.50 – 1 = 0.50 Step 2: .50 x 365 = 182.50
Fermat's theorem on sums of two squares, about primes expressible as a sum of squares; Fermat's theorem (stationary points), about local maxima and minima of differentiable functions; Fermat's principle, about the path taken by a ray of light; Fermat polygonal number theorem, about expressing integers as a sum of polygonal numbers