When.com Web Search

  1. Ad

    related to: 2d wave equation answer key

Search results

  1. Results From The WOW.Com Content Network
  2. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination of the two state vectors where a and b are any complex numbers. [13]: 25 Moreover, the sum can be extended for any number of state vectors.

  3. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    Wave equation. The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  4. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    Helmholtz equation. In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the elliptic partial differential equation: where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number.

  5. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).

  6. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    A Green's function, G(x,s), of a linear differential operator L = L(x) acting on distributions over a subset of the Euclidean space , at a point s, is any solution of. (1) where δ is the Dirac delta function. This property of a Green's function can be exploited to solve differential equations of the form.

  7. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:

  8. Vibrations of a circular membrane - Wikipedia

    en.wikipedia.org/wiki/Vibrations_of_a_circular...

    The properties of an idealized drumhead can be modeled by the vibrations of a circular membrane of uniform thickness, attached to a rigid frame. Due to the phenomenon of resonance, at certain vibration frequencies, its resonant frequencies, the membrane can store vibrational energy, the surface moving in a characteristic pattern of standing waves.

  9. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [citation needed] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface.