Ad
related to: x vs y graphing of inequalities examples
Search results
Results From The WOW.Com Content Network
In that case, the curve would be at y = 0% for all x < 100%, and y = 100% when x = 100%. This curve is called the "line of perfect inequality." This curve is called the "line of perfect inequality." The Gini coefficient is the ratio of the area between the line of perfect equality and the observed Lorenz curve to the area between the line of ...
This can be concisely written as the matrix inequality , where A is an m×n matrix, x is an n×1 column vector of variables, and b is an m×1 column vector of constants. [citation needed] In the above systems both strict and non-strict inequalities may be used. Not all systems of linear inequalities have solutions.
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
A graphical "proof" of Jensen's inequality for the probabilistic case. The dashed curve along the X axis is the hypothetical distribution of X, while the dashed curve along the Y axis is the corresponding distribution of Y values. Note that the convex mapping Y(X) increasingly "stretches" the distribution for increasing values of X.
What is typically used is y vs. x, such that x is horizontal and y is vertical. However, when specifically talking about plotting a function vs. its input, it is more clear and intuitive to plot f(x) vs. x (or f(y) vs. y or whatever), since the variables x and y are just placeholders. EmergencyBackupChicken 17:00, 7 May 2009 (UTC)
Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).