Search results
Results From The WOW.Com Content Network
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
(dynamic) viscosity (also ) pascal second (Pa⋅s) theta: angular displacement: radian (rad) kappa: torsion coefficient also called torsion constant newton meter per radian (N⋅m/rad) lambda: cosmological constant: per second squared (s −2)
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
The poise (symbol P; / p ɔɪ z, p w ɑː z /) is the unit of dynamic viscosity (absolute viscosity) in the centimetre–gram–second system of units (CGS). [1] It is named after Jean Léonard Marie Poiseuille (see Hagen–Poiseuille equation). The centipoise (1 cP = 0.01 P) is more commonly used than the poise itself.
Volume viscosity (also called bulk viscosity, or second viscosity or, dilatational viscosity) is a material property relevant for characterizing fluid flow. Common symbols are ζ , μ ′ , μ b , κ {\displaystyle \zeta ,\mu ',\mu _{\mathrm {b} },\kappa } or ξ {\displaystyle \xi } .
The existence of the velocity gradient in the functional relationship for non-Newtonian fluids says that viscosity is generally not an equation of state, so the term constitutional equation will in general be used for viscosity equations (or functions). The free variables in the two equations above, also indicates that specific constitutive ...
[4] [5] The Jones–Dole expression works well up to about 1 M, but at higher concentrations breaks down, as the viscosity of all solutions increase rapidly at high concentrations. The large increase in viscosity as a function of solute concentration seen in all solutions above about 1 M is the effect of a jamming transition at a high ...