When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantum chromodynamics binding energy - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics...

    Quantum chromodynamics binding energy (QCD binding energy), gluon binding energy or chromodynamic binding energy is the energy binding quarks together into hadrons. It is the energy of the field of the strong force, which is mediated by gluons. Motion-energy and interaction-energy contribute most of the hadron's mass. [1]

  3. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    A graphical representation of the semi-empirical binding energy formula. The binding energy per nucleon in MeV (highest numbers in yellow, in excess of 8.5 MeV per nucleon) is plotted for various nuclides as a function of Z, the atomic number (y-axis), vs. N, the number of neutrons (x-axis). The highest numbers are seen for Z = 26 (iron).

  4. Quantum chromodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics

    More precisely, it is a low energy expansion based on the spontaneous chiral symmetry breaking of QCD, which is an exact symmetry when quark masses are equal to zero, but for the u, d and s quark, which have small mass, it is still a good approximate symmetry.

  5. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.

  6. Quark - Wikipedia

    en.wikipedia.org/wiki/Quark

    A quark (/ k w ɔːr k, k w ɑːr k /) is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. [1] All commonly observable matter is composed of up quarks, down quarks and electrons.

  7. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    E B = binding energy, a v = nuclear volume coefficient, a s = nuclear surface coefficient, a c = electrostatic interaction coefficient, a a = symmetry/asymmetry extent coefficient for the numbers of neutrons/protons,

  8. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The value of the vacuum energy (or more precisely, the renormalization scale used to calculate this energy) may also be treated as an additional free parameter. The renormalization scale may be identified with the Planck scale or fine-tuned to match the observed cosmological constant .

  9. Cornell potential - Wikipedia

    en.wikipedia.org/wiki/Cornell_potential

    The potential consists of two parts. The first one, dominate at short distances, typically for < fm. [3] It arises from the one-gluon exchange between the quark and its anti-quark, and is known as the Coulombic part of the potential, since it has the same form as the well-known Coulombic potential induced by the electromagnetic force (where is the electromagnetic coupling constant).