When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry , a rhombus ( pl. : rhombi or rhombuses ) is a quadrilateral whose four sides all have the same length.

  3. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    A square can also be defined as a parallelogram with equal diagonals that bisect the angles. If a figure is both a rectangle (right angles) and a rhombus (equal edge lengths), then it is a square. A square has a larger area than any other quadrilateral with the same perimeter. [7]

  4. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    A convex quadrilateral is equidiagonal if and only if its Varignon parallelogram, the parallelogram formed by the midpoints of its sides, is a rhombus. An equivalent condition is that the bimedians of the quadrilateral (the diagonals of the Varignon parallelogram) are perpendicular. [3]

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics. [1] Square – A parallelogram with four sides of equal length and angles of equal size (right angles).

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [16]

  8. Rhomboid - Wikipedia

    en.wikipedia.org/wiki/Rhomboid

    Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...

  9. Inscribed square problem - Wikipedia

    en.wikipedia.org/wiki/Inscribed_square_problem

    Therefore, there always exists at least one crossing, which forms the center of a rhombus inscribed in the given curve. By rotating the two perpendicular lines continuously through a right angle, and applying the intermediate value theorem, he shows that at least one of these rhombi is a square. [6]