Search results
Results From The WOW.Com Content Network
Oxygen-balanced iron thermite 2Al + Fe 2 O 3 has theoretical maximum density of 4.175 g/cm 3 an adiabatic burn temperature of 3135 K or 2862 °C or 5183 °F (with phase transitions included, limited by iron, which boils at 3135 K), the aluminum oxide is (briefly) molten and the produced iron is mostly liquid with part of it being in gaseous ...
The composition by weight of Thermate-TH3 (in military use) is 68.7% thermite, 29.0% barium nitrate, 2.0% sulfur and 0.3% binder (such as polybutadiene acrylonitrile (PBAN)). As both thermite and thermate are notoriously difficult to ignite, initiating the reaction normally requires supervision and sometimes persistent effort.
Nano-thermite or super-thermite is a metastable intermolecular composite (MIC) characterized by a particle size of its main constituents, a metal fuel and oxidizer, under 100 nanometers. This allows for high and customizable reaction rates. Nano-thermites contain an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale.
smoke compositions – burn slowly, produce smoke, plain or colored; delay compositions – burn at constant slow speed, used to introduce delays into the firing train; pyrotechnic heat sources – produce large amount of heat and little to no gases, slow-burning, often thermite-like compositions; sparklers – producing white or colored sparks
The Sun is 1.4 million kilometers (4.643 light-seconds) wide, about 109 times wider than Earth, or four times the Lunar distance, and contains 99.86% of all Solar System mass. The Sun is a G-type main-sequence star that makes up about 99.86% of the mass of the Solar System. [26]
For premium support please call: 800-290-4726 more ways to reach us
A substance is characterized by a burn rate vs. pressure chart and burn rate vs temperature chart. Higher burn rate than the speed of sound in the material (usually several km/s): "detonation" A few meters per second: "deflagration" A few centimeters per second: "burn" or "smolder" 0.01 mm/s to 100 mm/s: "decomposing rapidly" to characterise it.
In thermodynamics, an exothermic process (from Ancient Greek έξω (éxō) 'outward' and θερμικός (thermikós) 'thermal') [1] is a thermodynamic process or reaction that releases energy from the system to its surroundings, [2] usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity (e.g. a ...