When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).

  3. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1] It is named after Étienne Bézout.

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    Graph of x 3 + 2x 2 − 7x + 4 with a simple root (multiplicity 1) at x=−4 and a root of multiplicity 2 at x=1. The graph crosses the x axis at the simple root. It is tangent to the x axis at the multiple root and does not cross it, since the multiplicity is even.

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Theorem — The number of strictly positive roots (counting multiplicity) of is equal to the number of sign changes in the coefficients of , minus a nonnegative even number. If b 0 > 0 {\displaystyle b_{0}>0} , then we can divide the polynomial by x b 0 {\displaystyle x^{b_{0}}} , which would not change its number of strictly positive roots.

  7. Polynomial decomposition - Wikipedia

    en.wikipedia.org/wiki/Polynomial_decomposition

    The first algorithm for polynomial decomposition was published in 1985, [6] though it had been discovered in 1976, [7] and implemented in the Macsyma/Maxima computer algebra system. [8] That algorithm takes exponential time in worst case, but works independently of the characteristic of the underlying field .

  8. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function, is a member of the domain of such that () vanishes at ; that is, the function attains the value of 0 at , or equivalently, is a solution to the equation () =. [1] A "zero" of a function is thus an input value that produces an output ...

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    In particular, the real roots are mostly located near ±1, and, moreover, their expected number is, for a large degree, less than the natural logarithm of the degree. If the coefficients are Gaussian distributed with a mean of zero and variance of σ then the mean density of real roots is given by the Kac formula [ 21 ] [ 22 ]