Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
In computer programming, array slicing is an operation that extracts a subset of elements from an array and packages them as another array, possibly in a different dimension from the original. Common examples of array slicing are extracting a substring from a string of characters, the " ell " in "h ell o", extracting a row or column from a two ...
Support for multi-dimensional arrays may also be provided by external libraries, which may even support arbitrary orderings, where each dimension has a stride value, and row-major or column-major are just two possible resulting interpretations. Row-major order is the default in NumPy [19] (for Python).
The cosine of two non-zero vectors can be derived by using the Euclidean dot product formula: = ‖ ‖ ‖ ‖ Given two n-dimensional vectors of attributes, A and B, the cosine similarity, cos(θ), is represented using a dot product and magnitude as
In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array. The outer product of multidimensional arrays can be computed using np.multiply.outer .
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.