Search results
Results From The WOW.Com Content Network
It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ , are irrational. [1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ ...
The number 0 can be regarded as neither positive nor negative [73] or, alternatively, both positive and negative [74] and is usually displayed as the central number in a number line. Zero is even [ 75 ] (that is, a multiple of 2), and is also an integer multiple of any other integer, rational, or real number.
Owing to the zeros of the sine function, the functional equation implies that ζ(s) has a simple zero at each even negative integer s = −2n, known as the trivial zeros of ζ(s). When s is an even positive integer, the product sin( π s / 2 ) Γ(1 − s ) on the right is non-zero because Γ(1 − s ) has a simple pole , which cancels ...
The number 2 raised to any positive integer power must be even (because it is divisible by 2) and the number 3 raised to any positive integer power must be odd (since none of its prime factors will be 2). Clearly, an integer cannot be both odd and even at the same time: we have a contradiction.
Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.
Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...
On the other hand, in 1821 Cauchy [20] explained why the limit of x y as positive numbers x and y approach 0 while being constrained by some fixed relation could be made to assume any value between 0 and ∞ by choosing the relation appropriately. He deduced that the limit of the full two-variable function x y without a specified constraint is ...
Heaviside step function: 0 for negative arguments and 1 for positive arguments. The integral of the Dirac delta function. Sawtooth wave; Square wave; Triangle wave; Rectangular function; Floor function: Largest integer less than or equal to a given number. Ceiling function: Smallest integer larger than or equal to a given number. Sign function ...