When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    It is sometimes necessary to separate a continued fraction into its even and odd parts. For example, if the continued fraction diverges by oscillation between two distinct limit points p and q, then the sequence {x 0, x 2, x 4, ...} must converge to one of these, and {x 1, x 3, x 5, ...} must converge to the other.

  3. Solving quadratic equations with continued fractions - Wikipedia

    en.wikipedia.org/wiki/Solving_quadratic...

    Denoting the two roots by r 1 and r 2 we distinguish three cases. If the discriminant is zero the fraction converges to the single root of multiplicity two. If the discriminant is not zero, and |r 1 | ≠ |r 2 |, the continued fraction converges to the root of maximum modulus (i.e., to the root with the greater absolute value).

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    The entire fraction may be expressed as a single composition, in which case it is hyphenated, or as a number of fractions with a numerator of one, in which case they are not. (For example, two-fifths is the fraction2 / 5 ⁠ and two fifths is the same fraction understood as 2 instances of ⁠ 1 / 5 ⁠.) Fractions should always be ...

  5. Euler's continued fraction formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_continued_fraction...

    Euler derived the formula as connecting a finite sum of products with a finite continued fraction. (+ (+ (+))) = + + + + = + + + +The identity is easily established by induction on n, and is therefore applicable in the limit: if the expression on the left is extended to represent a convergent infinite series, the expression on the right can also be extended to represent a convergent infinite ...

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Graphs of y = b x for various bases b: base 10, base e, base 2, base ⁠ 1 / 2 ⁠. Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.

  7. Algebraic fraction - Wikipedia

    en.wikipedia.org/wiki/Algebraic_fraction

    A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus 3 x x 2 + 2 x − 3 {\displaystyle {\frac {3x}{x^{2}+2x-3}}} is a rational fraction, but not x + 2 x 2 − 3 , {\displaystyle {\frac {\sqrt {x+2}}{x^{2}-3}},} because the numerator contains a square root function.

  8. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy. Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. [4]

  9. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    Any improper rational fraction can be expressed as the sum of a polynomial (possibly constant) and a proper rational fraction. In the first example of an improper fraction one has x 3 + x 2 + 1 x 25 x + 6 = ( x + 6 ) + 24 x − 35 x 25 x + 6 , {\displaystyle {\frac {x^{3}+x^{2}+1}{x^{2}-5x+6}}=(x+6)+{\frac {24x-35}{x^{2}-5x+6}},}