Search results
Results From The WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
Priest proposed to use "the scale of temperature as a scale for arranging the chromaticities of the several illuminants in a serial order". Over the next few years, Judd published three more significant papers: The first verified the findings of Priest, [7] Davis, [8] and Judd, [9] with a paper on sensitivity to change in color temperature. [11]
A list of standardized illuminants, their CIE chromaticity coordinates (x,y) of a perfectly reflecting (or transmitting) diffuser, and their correlated color temperatures (CCTs) are given below. The CIE chromaticity coordinates are given for both the 2 degree field of view (1931) and the 10 degree field of view (1964). [1]
Planckian locus in the CIE 1931 chromaticity diagram. In physics and color science, the Planckian locus or black body locus is the path or locus that the color of an incandescent black body would take in a particular chromaticity space as the blackbody temperature changes.
In astronomy, the color index is a simple numerical expression that determines the color of an object, which in the case of a star gives its temperature. The lower the color index, the more blue (or hotter) the object is. Conversely, the larger the color index, the more red (or cooler) the object is.
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (10 9) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.
Color temperatures and example sources Temperature Source 1700 K Match flame, low pressure sodium lamps (LPS/SOX) 1850 K Candle flame, sunset/sunrise: 2400 K Standard incandescent lamps: 2550 K Soft white incandescent lamps 2700 K "Soft white" compact fluorescent and LED lamps 3000 K Warm white compact fluorescent and LED lamps 3200 K
The Planckian locus on the MacAdam (u, v) chromaticity diagram. The normals are lines of equal correlated color temperature. The CIE 1960 color space ("CIE 1960 UCS", variously expanded Uniform Color Space, Uniform Color Scale, Uniform Chromaticity Scale, Uniform Chromaticity Space) is another name for the (u, v) chromaticity space devised by David MacAdam.