Search results
Results From The WOW.Com Content Network
This result also holds for equations of higher degree. An example of a quintic whose roots cannot be expressed in terms of radicals is x 5 − x + 1 = 0. Numerical approximations of quintics roots can be computed with root-finding algorithms for polynomials. Although some quintics may be solved in terms of radicals, the solution is generally ...
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
The two circles in the Two points, one line problem where the line through P and Q is not parallel to the given line l, can be constructed with compass and straightedge by: Draw the line m through the given points P and Q. The point G is where the lines l and m intersect; Draw circle C that has PQ as diameter. Draw one of the tangents from G to ...
Alternative notations include C(n, k), n C k, n C k, C k n, [3] C n k, and C n,k, in all of which the C stands for combinations or choices; the C notation means the number of ways to choose k out of n objects. Many calculators use variants of the C notation because they can represent it on a single-line display.
The problem of bounding the magnitude of the coefficients of the cyclotomic polynomials has been the object of a number of research papers. [7] If n has at most two distinct odd prime factors, then Migotti showed that the coefficients of are all in the set {1, −1, 0}. [8]
Runge's phenomenon is the consequence of two properties of this problem. The magnitude of the n-th order derivatives of this particular function grows quickly when n increases. The equidistance between points leads to a Lebesgue constant that increases quickly when n increases.
In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
For the operations beyond exponentiation, the nth member of this sequence is named by Reuben Goodstein after the Greek prefix of n suffixed with -ation (such as tetration (n = 4), pentation (n = 5), hexation (n = 6), etc.) [5] and can be written as using n − 2 arrows in Knuth's up-arrow notation.