Ad
related to: surface integral vs double line math examples video for kids- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Plans & Pricing
Check the Pricing Of the Available
Plans. Select the One You Need!
- DIY Science Activities
Do-It-Yourself activities for kids.
Using common classroom materials.
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 3-5 Math lessons
Search results
Results From The WOW.Com Content Network
In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral .
A double integral, on the other hand, is defined with respect to area in the xy-plane. If the double integral exists, then it is equal to each of the two iterated integrals (either "dy dx" or "dx dy") and one often computes it by computing either of the iterated integrals. But sometimes the two iterated integrals exist when the double integral ...
In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. [1] The terms path integral , curve integral , and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane .
For example, a sphere is the locus of a point which is at a given distance of a fixed point, called the center; a conical surface is the locus of a line passing through a fixed point and crossing a curve; a surface of revolution is the locus of a curve rotating around a line. A ruled surface is the locus of a moving line satisfying some ...
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
The reason for defining the vector derivative and integral as above is that they allow a strong generalization of Stokes' theorem. Let L ( A ; x ) {\displaystyle {\mathsf {L}}(A;x)} be a multivector-valued function of r {\displaystyle r} -grade input A {\displaystyle A} and general position x {\displaystyle x} , linear in its first argument.
Two other well-known examples are when integration by parts is applied to a function expressed as a product of 1 and itself. This works if the derivative of the function is known, and the integral of this derivative times is also known. The first example is (). We write this as:
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...