Search results
Results From The WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe (inside) diameter. f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D.
English: The Darcy friction factor versus Reynolds Number for 10 < Re < 10E8 for smooth pipe and a range of values of relative roughness ε/D. Data are from Nikuradse (1932, 1933), Colebrook (1939), and McKeon (2004).
where the roughness height ε is scaled to the pipe diameter D. Figure 3. Roughness function B vs. friction Reynolds number R ∗. The data fall on a single trajectory when plotted in this way. The regime R ∗ < 1 is effectively that of smooth pipe flow. For large R ∗, the roughness function B approaches a constant value.
Surface roughness or simply roughness is the quality of a surface of not being smooth and it is hence linked to human perception of the surface texture. From a mathematical perspective it is related to the spatial variability structure of surfaces, and inherently it is a multiscale property.
This relative movement generates fluid friction, which is a factor in developing turbulent flow. Counteracting this effect is the viscosity of the fluid, which tends to inhibit turbulence. The Reynolds number quantifies the relative importance of these two types of forces for given flow conditions and is a guide to when turbulent flow will ...
Surface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology.Surface primary form, surface fractality, and surface finish (including surface roughness) are the parameters most commonly associated with the field.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.