When.com Web Search

  1. Ads

    related to: tension in a massless rope line with velocity of 30 feet and 1 meter of rain

Search results

  1. Results From The WOW.Com Content Network
  2. Tension (physics) - Wikipedia

    en.wikipedia.org/wiki/Tension_(physics)

    Tension is the pulling or stretching force transmitted axially along an object such as a string, rope, chain, rod, truss member, or other object, so as to stretch or pull apart the object. In terms of force, it is the opposite of compression. Tension might also be described as the action-reaction pair of forces acting at each end of an object.

  3. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  4. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    where is the applied tension on the line, is the resulting force exerted at the other side of the capstan, is the coefficient of friction between the rope and capstan materials, and is the total angle swept by all turns of the rope, measured in radians (i.e., with one full turn the angle =).

  5. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    The speed of the raindrop is inversely proportional to the square root of the radius and equals the negative newtonian escape velocity. At points very far away from the black hole, the speed is extremely small. As the raindrop plunges toward the black hole, the speed increases. At the event horizon, the speed has the value 1.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...

  7. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    Therefore, the spring constant k, and each element of the tensor κ, is measured in newtons per meter (N/m), or kilograms per second squared (kg/s 2). For continuous media, each element of the stress tensor σ is a force divided by an area; it is therefore measured in units of pressure, namely pascals (Pa, or N/m 2 , or kg/(m·s 2 ).

  8. Fall factor - Wikipedia

    en.wikipedia.org/wiki/Fall_factor

    However, rope manufacturers give only the rope’s impact force F 0 and its static and dynamic elongations that are measured under standard UIAA fall conditions: A fall height h 0 of 2 × 2.3 m with an available rope length L 0 = 2.6m leads to a fall factor f 0 = h 0 /L 0 = 1.77 and a fall velocity v 0 = (2gh 0) 1/2 = 9.5 m/s at the end of ...

  9. Massless free scalar bosons in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Massless_free_scalar...

    Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra. Since they are free i.e. non-interacting, free bosonic CFTs are easily solved exactly. Via the Coulomb gas formalism, they lead to exact results in interacting CFTs such as minimal models.