Ad
related to: graph theory of cycle 1 and time
Search results
Results From The WOW.Com Content Network
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with n vertices is called C n. [2]
This graph has circuit rank r = 2 because it can be made into a tree by removing two edges, for instance the edges 1–2 and 2–3, but removing any one edge leaves a cycle in the graph. In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges ...
The red and blue arrows are clockwise and counter-clockwise respectively for all cycles, and the black arrow is counter-clockwise relative to cycle 1 and clockwise relative to cycle 2. In graph theory, a Pfaffian orientation of an undirected graph assigns a direction to each edge, so that certain cycles (the "even central cycles") have an odd ...
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph.
In graph theory, the cycle rank of a directed graph is a digraph connectivity measure proposed first by Eggan and Büchi . Intuitively, this concept measures how close a digraph is to a directed acyclic graph (DAG), in the sense that a DAG has cycle rank zero, while a complete digraph of order n with a self-loop at each vertex has cycle rank n.
In group theory, a subfield of abstract algebra, a cycle graph of a group is an undirected graph that illustrates the various cycles of that group, given a set of generators for the group. Cycle graphs are particularly useful in visualizing the structure of small finite groups .