Ad
related to: bounded and complemented lattices in excel spreadsheet definition
Search results
Results From The WOW.Com Content Network
Hasse diagram of a complemented lattice. A point p and a line l of the Fano plane are complements if and only if p does not lie on l.. In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0.
In particular, a bounded-lattice homomorphism (usually called just "lattice homomorphism") between two bounded lattices and should also have the following property: =, =. In the order-theoretic formulation, these conditions just state that a homomorphism of lattices is a function preserving binary meets and joins.
An orthocomplemented lattice is complemented. (def) 8. A complemented lattice is bounded. (def) 9. An algebraic lattice is complete. (def) 10. A complete lattice is bounded. 11. A heyting algebra is bounded. (def) 12. A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A ...
Every pseudocomplemented lattice is necessarily bounded, i.e. it has a 1 as well. Since the pseudocomplement is unique by definition (if it exists), a pseudocomplemented lattice can be endowed with a unary operation * mapping every element to its pseudocomplement; this structure is sometimes called a p-algebra.
Every interval of a geometric lattice (the subset of the lattice between given lower and upper bound elements) is itself geometric; taking an interval of a geometric lattice corresponds to forming a minor of the associated matroid. Geometric lattices are complemented, and because of the interval property they are also relatively complemented. [7]
The complete subgroup lattice for D4, the dihedral group of the square. This is an example of a complete lattice. In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum ().
The greatest lower bound of any family of substructures is their intersection (or A if the family is empty). The compact elements of Sub( A ) are exactly the finitely generated substructures of A . Every substructure is the union of its finitely generated substructures; hence Sub( A ) is an algebraic lattice.
Birkhoff's theorem, as stated above, is a correspondence between individual partial orders and distributive lattices. However, it can also be extended to a correspondence between order-preserving functions of partial orders and bounded homomorphisms of the corresponding distributive lattices. The direction of these maps is reversed in this ...