When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    The stability function of an explicit RungeKutta method is a polynomial, so explicit RungeKutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    The RungeKutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    The first row of coefficients at the bottom of the table gives the fifth-order accurate method, and the second row gives the fourth-order accurate method. This shows the computational time in real time used during a 3-body simulation evolved with the Runge-Kutta-Fehlberg method.

  5. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    This guarantees stability if an integration scheme with a stability region that includes parts of the imaginary axis, such as the fourth order Runge-Kutta method, is used. This makes the SAT technique an attractive method of imposing boundary conditions for higher order finite difference methods, in contrast to for example the injection method ...

  6. Cash–Karp method - Wikipedia

    en.wikipedia.org/wiki/Cash–Karp_method

    The method is a member of the RungeKutta family of ODE solvers. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions. More specifically, it uses six function evaluations to calculate fourth- and fifth-order accurate solutions.

  7. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    The simulation was carried out with a mesh of 200 cells and used a 4th order RungeKutta time integrator (RK4). To provide higher resolution of discontinuities, Godunov's scheme can be extended to use piecewise linear approximations of each cell, which results in a central difference scheme that is second-order accurate in space. The ...

  8. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_method_(SDE)

    A newer RungeKutta scheme also of strong order 1 straightforwardly reduces to the improved Euler scheme for deterministic ODEs. [2] Consider the vector stochastic process () that satisfies the general Ito SDE = (,) + (,), where drift and volatility are sufficiently smooth functions of their arguments.

  9. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order RungeKutta methods. The procedure for calculating the numerical solution to the initial value problem: