Search results
Results From The WOW.Com Content Network
Average path length, or average shortest path length is a concept in network topology that is defined as the average number of steps along the shortest paths for all possible pairs of network nodes. It is a measure of the efficiency of information or mass transport on a network.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The greatest length of any of these paths is the diameter of the graph. A central vertex in a graph of radius r is one whose eccentricity is r —that is, a vertex whose distance from its furthest vertex is equal to the radius, equivalently, a vertex v such that ϵ(v) = r.
Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
The number next to each node is the distance from that node to the square red node as measured by the length of the shortest path. The green edges illustrate one of the two shortest paths between the red square node and the red circle node. The closeness of the red square node is therefore 5/(1+1+1+2+2) = 5/7.
The resistance distance between vertices and is proportional to the commute time, of a random walk between and .The commute time is the expected number of steps in a random walk that starts at , visits , and returns to .