When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    And since a rotation matrix commutes with its transpose, it is a normal matrix, so can be diagonalized. We conclude that every rotation matrix, when expressed in a suitable coordinate system, partitions into independent rotations of two-dimensional subspaces, at most ⁠ n / 2 ⁠ of them.

  4. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    This matrix can be thought of as a rotation matrix in four-dimensional space, which rotates the four-vector around a particular axis. + + + =. Rotations in planes spanned by two space unit vectors appear in coordinate space as well as in physical spacetime as Euclidean rotations and are interpreted in the ordinary sense.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    An arbitrary four-dimensional rotation has six degrees of freedom, with each matrix contributing three of these six degrees of freedom. Since the generators of the four-dimensional rotations can be represented by pairs of quaternions (as follows), all four-dimensional rotations can also be represented.

  6. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    A perspective projection onto three-dimensions of a tesseract being rotated in four-dimensional Euclidean space. A general rotation in four dimensions has only one fixed point, the centre of rotation, and no axis of rotation; see rotations in 4-dimensional Euclidean space for details. Instead the rotation has two mutually orthogonal planes of ...

  7. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  8. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  9. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts.