Search results
Results From The WOW.Com Content Network
Alcohol can be converted to haloalkanes. ... Thus, haloalkanes can be converted to alkenes. Similarly, dihaloalkanes can be converted to alkynes. [citation needed]
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
For deprotection (regeneration of the alcohol) Aqueous base (pH >9) [6]; Aqueous acid (pH <2), may have to be heated [7]; Anhydrous base such as sodium methoxide in methanol. Very useful when a methyl ester of a carboxylic acid is also present in the molecule, as it will not hydrolyze it like an aqueous base would.
Organoborane activation with hydroxide or alkoxide and treatment with X 2 yields haloalkanes. With excess base, two of the three alkyl groups attached to the boron atom may convert to halide, but disiamylborane permits only halogenation of the hydroborated olefin: [46]
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol (−OH) is oxidized to an aldehyde (−CH=O) or ketone (>C=O) using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine.
The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [ 2 ] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction .