Search results
Results From The WOW.Com Content Network
The Conference and Workshop on Neural Information Processing Systems (abbreviated as NeurIPS and formerly NIPS) is a machine learning and computational neuroscience conference held every December. Along with ICLR and ICML, it is one of the three primary conferences of high impact in machine learning and artificial intelligence research. [1]
A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines, particularly computer systems.It is a field of research in computer science that develops and studies methods and software that enable machines to perceive their environment and use learning and intelligence to take actions that maximize their chances of achieving defined goals. [1]
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
The algorithm selection problem is mainly solved with machine learning techniques. By representing the problem instances by numerical features f {\displaystyle f} , algorithm selection can be seen as a multi-class classification problem by learning a mapping f i ↦ A {\displaystyle f_{i}\mapsto {\mathcal {A}}} for a given instance i ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...