Search results
Results From The WOW.Com Content Network
A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth.
Since this shallow-water phase speed is independent of the wavelength, shallow water waves do not have frequency dispersion. Using another normalization for the same frequency dispersion relation, the figure on the right shows that for a fixed wavelength λ the phase speed c p increases with increasing water depth. [1]
Weather satellites take advantage of this instability to measure wind speeds over large bodies of water. Waves are generated by the wind, which shears the water at the interface between it and the surrounding air. The computers on board the satellites determine the roughness of the ocean by measuring the wave height.
F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area . Here t ^ {\displaystyle \mathbf {\hat {t}} \,\!} is a unit vector in the direction of the flow/current/flux.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
Much like the familiar oceanic waves, waves described by the Euler Equations 'break' and so-called shock waves are formed; this is a nonlinear effect and represents the solution becoming multi-valued. Physically this represents a breakdown of the assumptions that led to the formulation of the differential equations, and to extract further ...
The surface tension gradient can be caused by concentration gradient or by a temperature gradient (surface tension is a function of temperature). In simple cases, the speed of the flow u ≈ Δ γ / μ {\displaystyle u\approx \Delta \gamma /\mu } , where Δ γ {\displaystyle \Delta \gamma } is the difference in surface tension and μ ...
An example of a geostrophic flow in the Northern Hemisphere. A northern-hemisphere gyre in geostrophic balance. Paler water is less dense than dark water, but more dense than air; the outwards pressure gradient is balanced by the 90 degrees-right-of-flow coriolis force. The structure will eventually dissipate due to friction and mixing of water ...