Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
If X is a binomial (n, p) random variable then (n − X) is a binomial (n, 1 − p) random variable. If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable; If X is a normal (μ, σ 2) random variable then e X is a lognormal (μ, σ 2) random variable.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A Poisson binomial distribution can be approximated by a binomial distribution where , the mean of the , is the success probability of . The variances of P B {\displaystyle PB} and B {\displaystyle B} are related by the formula