Search results
Results From The WOW.Com Content Network
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
The proper calculation of electrostatic lattice constants has to consider the crystallographic point groups of ionic lattice sites; for instance, dipole moments may only arise on polar lattice sites, i. e. exhibiting a C 1, C 1h, C n or C nv site symmetry (n = 2, 3, 4 or 6). [11]
The translation vectors define the nodes of Bravais lattice. The lengths of principal axes/edges, of unit cell and angles between them are lattice constants, also called lattice parameters or cell parameters. The symmetry properties of crystal are described by the concept of space groups. [1]
Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution. Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3]
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt and sphalerite where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction Na + (g) + Cl − (g) → NaCl (s) which amounts to −786 kJ/mol. [2]
Just as in 1D, the FWHM varies as the inverse of the characteristic size. For example, for a spherical crystallite with a cubic lattice, [2] the factor of 5.56 simply becomes 6.96, when the size is the diameter D, i.e., the diameter of a spherical nanocrystal is related to the peak FWHM by