Search results
Results From The WOW.Com Content Network
Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
The method of approach to steady state has also been used to analyze the change in messenger RNA levels when synthesis or degradation changes, and a model has also been reported in which the plateau principle is used to connect the change in messenger RNA synthesis to the expected change in protein synthesis and concentration as a function of time.
Steady state is reached (attained) after transient (initial, oscillating or turbulent) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady ...
If b ≠ 0, the equation = + + + is said to be nonhomogeneous.To solve this equation it is convenient to convert it to homogeneous form, with no constant term. This is done by first finding the equation's steady state value—a value y* such that, if n successive iterates all had this value, so would all future values.
Steady-states can be stable or unstable. A steady-state is unstable if a small perturbation in one or more of the concentrations results in the system diverging from its state. In contrast, if a steady-state is stable, any perturbation will relax back to the original steady state. Further details can be found on the page Stability theory.
In pharmacokinetics, the drug accumulation ratio (R ac) is the ratio of accumulation of a drug under steady state conditions (i.e., after repeated administration) as compared to a single dose. The higher the value, the more the drug accumulates in the body. An R ac of 1 means no accumulation.
The state is periodic if >; otherwise = and the state is aperiodic. A state i is said to be transient if, starting from i, there is a non-zero probability that the chain will never return to i. It is called recurrent (or persistent) otherwise. [48] For a recurrent state i, the mean hitting time is defined as: