When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. System identification - Wikipedia

    en.wikipedia.org/wiki/System_identification

    In the context of nonlinear system identification Jin et al. [9] describe grey-box modeling by assuming a model structure a priori and then estimating the model parameters. Parameter estimation is relatively easy if the model form is known but this is rarely the case.

  3. Identifiability - Wikipedia

    en.wikipedia.org/wiki/Identifiability

    Identifiability of the model in the sense of invertibility of the map is equivalent to being able to learn the model's true parameter if the model can be observed indefinitely long. Indeed, if { X t } ⊆ S is the sequence of observations from the model, then by the strong law of large numbers ,

  4. Parameter identification problem - Wikipedia

    en.wikipedia.org/wiki/Parameter_identification...

    Note that this is the structural form of the model, showing the relations between the Q and P. The reduced form however can be identified easily. Fisher points out that this problem is fundamental to the model, and not a matter of statistical estimation:

  5. Nonlinear system identification - Wikipedia

    en.wikipedia.org/.../Nonlinear_system_identification

    System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.

  6. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  7. Simultaneous equations model - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_equations_model

    The identification conditions require that the system of linear equations be solvable for the unknown parameters.. More specifically, the order condition, a necessary condition for identification, is that for each equation k i + n i ≤ k, which can be phrased as “the number of excluded exogenous variables is greater or equal to the number of included endogenous variables”.

  8. Set identification - Wikipedia

    en.wikipedia.org/wiki/Set_identification

    In statistics and econometrics, set identification (or partial identification) extends the concept of identifiability (or "point identification") in statistical models to environments where the model and the distribution of observable variables are not sufficient to determine a unique value for the model parameters, but instead constrain the parameters to lie in a strict subset of the ...

  9. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    The identification condition is absolutely necessary for the ML estimator to be consistent. When this condition holds, the limiting likelihood function ℓ(θ|·) has unique global maximum at θ 0. Compactness: the parameter space Θ of the model is compact. The identification condition establishes that the log-likelihood has a unique global ...