When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .

  3. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  4. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.

  5. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  6. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The theorem may also be proven using trigonometry: Let O = (0, 0), A = (−1, 0), and C = (1, 0). Then B is a point on the unit circle (cos θ, sin θ). We will show that ABC forms a right angle by proving that AB and BC are perpendicular — that is, the product of their slopes is equal to −1. We calculate the slopes for AB and BC:

  7. Circle theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_theorem

    Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.

  8. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Given the length y of a chord and the length x of the sagitta, the Pythagorean theorem can be used to calculate the radius of the unique circle that will fit around the two lines: = +. Another proof of this result, which relies only on two chord properties given above, is as follows.

  9. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).