Search results
Results From The WOW.Com Content Network
The following equivalent resistance calculation will show how during each switching cycle, this switched-capacitor circuit transfers an amount of charge from in to out such that it behaves according to a similar linear current–voltage relationship with = / ().
When calculating a Thévenin-equivalent voltage, the voltage divider principle is often useful, by declaring one terminal to be V out and the other terminal to be at the ground point. The Thévenin-equivalent resistance R Th is the resistance measured across points A and B "looking back" into the circuit. The resistance is measured after ...
A 1953 paper "Coding by Feedback Methods" [1] describes "decoding networks" that convert numbers (in any base) represented by voltage sources or current sources connected to resistor networks in a "shunt resistor decoding network" (which in base 2 corresponds to the binary-weighted configuration) or in a "ladder resistor decoding network" (which in base 2 corresponds to R–2R configuration ...
The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no resistance or load connected to, then R no = V o / I no; equivalently, this is the resistance between the terminals with all (independent) voltage sources short-circuited and independent current sources open-circuited (i.e., each independent ...
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
A resistance equal to the slope of the v/i curve at the operating point (called the dynamic resistance), and tangent to the curve. A generator, because this tangent will not, in general, pass through the origin. With more terminals, more complicated equivalent circuits are required.
The total resistance of this parallel arrangement is expressed by the following equation: 1/R total = 1/R a + 1/R b + ... + 1/R n. R a, R b, and R n are the resistances of the renal, hepatic, and other arteries respectively. The total resistance is less than the resistance of any of the individual arteries. [3]
Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of ...