Search results
Results From The WOW.Com Content Network
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
The stereochemical structure of a cyclic monosaccharide can be represented in a Haworth projection. In this diagram, the α-isomer for the pyranose form of a D -aldohexose has the −OH of the anomeric carbon below the plane of the carbon atoms, while the β-isomer has the −OH of the anomeric carbon above the plane.
The chair conformation of six-membered rings have a dihedral angle of 60° between adjacent substituents thus usually making it the most stable conformer. Since there are two possible chair conformation steric and stereoelectronic effects such as the anomeric effect, 1,3-diaxial interactions, dipoles and intramolecular hydrogen bonding must be taken into consideration when looking at relative ...
Monosaccharide nomenclature is the naming system of the building blocks of carbohydrates, the monosaccharides, which may be monomers or part of a larger polymer. Monosaccharides are subunits that cannot be further hydrolysed in to simpler units.
For example, a monosaccharide with three carbon atoms , such as the D-Glyceraldehyde depicted above, has a tetrahedral geometry, with C2 at its center, and can be rotated in space so that the carbon chain is vertical with C1 at the top, and the horizontal bonds connecting C2 with the Hydrogen and the Hydroxide are both slanted toward the viewer.
It has a terminal aldehyde group rather than a ketone in its linear chain, and so is considered part of the aldose family of monosaccharides. The threose name can be used to refer to both the D - and L - stereoisomers , and more generally to the racemic mixture ( D / L -, equal parts D - and L -) as well as to the more generic threose structure ...
In chemistry, a hexose is a monosaccharide (simple sugar) with six carbon atoms. [1] [2] The chemical formula for all hexoses is C 6 H 12 O 6, and their molecular weight is 180.156 g/mol. [3] Hexoses exist in two forms, open-chain or cyclic, that easily convert into each other in aqueous solutions. [4]
A glycoprotein is a compound containing carbohydrate (or glycan) covalently linked to protein. The carbohydrate may be in the form of a monosaccharide, disaccharide(s). oligosaccharide(s), polysaccharide(s), or their derivatives (e.g. sulfo- or phospho-substituted). One, a few, or many carbohydrate units may be present.