Search results
Results From The WOW.Com Content Network
In the case of a triangular prism, its base is a triangle, so its volume can be calculated by multiplying the area of a triangle and the length of the prism: , where b is the length of one side of the triangle, h is the length of an altitude drawn to that side, and l is the distance between the triangular faces. [9]
b = the base side of the prism's triangular base, h = the height of the prism's triangular base L = the length of the prism see above for general triangular base Isosceles triangular prism: b = the base side of the prism's triangular base, h = the height of the prism's triangular base
An augmented triangular prism with edge length has a surface area, calculated by adding six equilateral triangles and two squares' area: [2] +. Its volume can be obtained by slicing it into a regular triangular prism and an equilateral square pyramid, and adding their volume subsequently: [2] +.
An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).
An elongated triangular orthobicupola with a given edge length has a surface area, by adding the area of all regular faces: [2] (+). Its volume can be calculated by cutting it off into two triangular cupolae and a hexagonal prism with regular faces, and then adding their volumes up: [2] (+).
To calculate the formula for the surface area and volume of a gyrobifastigium with regular faces and with edge length , one may adapt the corresponding formulae for the triangular prism. Its surface area A {\displaystyle A} can be obtained by summing the area of four equilateral triangles and four squares, whereas its volume V {\displaystyle V ...
The basic 3-dimensional element are the tetrahedron, quadrilateral pyramid, triangular prism, and hexahedron. They all have triangular and quadrilateral faces. Extruded 2-dimensional models may be represented entirely by the prisms and hexahedra as extruded triangles and quadrilaterals.
A volume is a measurement of a region in three-dimensional space. [12] The volume of a polyhedron may be ascertained in different ways: either through its base and height (like for pyramids and prisms), by slicing it off into pieces and summing their individual volumes, or by finding the root of a polynomial representing the polyhedron. [13]